Cursuri de pregatire Machine Learning and Deep Learning

Last updated

ID de curs

mldt

Durata

21 ore (usually 3 days including breaks)

Cerințe

Basic knowledge of statistical concepts is desirable.

Sinoptic

Acest curs acoperă AI (sublinierea Machine Learning Deep Learning și a Deep Learning )

Machine Translated

Schița de curs

Machine learning

Introduction to Machine Learning

  • Applications of machine learning
  • Supervised Versus Unsupervised Learning
  • Machine Learning Algorithms
    • Regression
    • Classification
    • Clustering
    • Recommender System
    • Anomaly Detection
    • Reinforcement Learning

Regression

  • Simple & Multiple Regression
    • Least Square Method
    • Estimating the Coefficients
    • Assessing the Accuracy of the Coefficient Estimates
    • Assessing the Accuracy of the Model
    • Post Estimation Analysis
    • Other Considerations in the Regression Models
    • Qualitative Predictors
    • Extensions of the Linear Models
    • Potential Problems
    • Bias-variance trade off [under-fitting/over-fitting] for regression models

Resampling Methods

  • Cross-Validation
  • The Validation Set Approach
  • Leave-One-Out Cross-Validation
  • k-Fold Cross-Validation
  • Bias-Variance Trade-Off for k-Fold
  • The Bootstrap

Model Selection and Regularization

  • Subset Selection [Best Subset Selection, Stepwise Selection, Choosing the Optimal Model]
  • Shrinkage Methods/ Regularization [Ridge Regression, Lasso & Elastic Net]
  • Selecting the Tuning Parameter
  • Dimension Reduction Methods
    • Principal Components Regression
    • Partial Least Squares

Classification

  • Logistic Regression

    • The Logistic Model cost function

    • Estimating the Coefficients

    • Making Predictions

    • Odds Ratio

    • Performance Evaluation Matrices

    • [Sensitivity/Specificity/PPV/NPV, Precision, ROC curve etc.]

    • Multiple Logistic Regression

    • Logistic Regression for >2 Response Classes

    • Regularized Logistic Regression

  • Linear Discriminant Analysis

    • Using Bayes’ Theorem for Classification

    • Linear Discriminant Analysis for p=1

    • Linear Discriminant Analysis for p >1

  • Quadratic Discriminant Analysis

  • K-Nearest Neighbors

  • Classification with Non-linear Decision Boundaries

  • Support Vector Machines

    • Optimization Objective

    • The Maximal Margin Classifier

    • Kernels

    • One-Versus-One Classification

    • One-Versus-All Classification

  • Comparison of Classification Methods

Introduction to Deep Learning

ANN Structure

  • Biological neurons and artificial neurons

  • Non-linear Hypothesis

  • Model Representation

  • Examples & Intuitions

  • Transfer Function/ Activation Functions

  • Typical classes of network architectures

Feed forward ANN.

  • Structures of Multi-layer feed forward networks

  • Back propagation algorithm

  • Back propagation - training and convergence

  • Functional approximation with back propagation

  • Practical and design issues of back propagation learning

Deep Learning

  • Artificial Intelligence & Deep Learning

  • Softmax Regression

  • Self-Taught Learning

  • Deep Networks

  • Demos and Applications

Lab:

Getting Started with R

  • Introduction to R

  • Basic Commands & Libraries

  • Data Manipulation

  • Importing & Exporting data

  • Graphical and Numerical Summaries

  • Writing functions

Regression

  • Simple & Multiple Linear Regression

  • Interaction Terms

  • Non-linear Transformations

  • Dummy variable regression

  • Cross-Validation and the Bootstrap

  • Subset selection methods

  • Penalization [Ridge, Lasso, Elastic Net]

Classification

  • Logistic Regression, LDA, QDA, and KNN,

  • Resampling & Regularization

  • Support Vector Machine

  • Resampling & Regularization

Note:

  • For ML algorithms, case studies will be used to discuss their application, advantages & potential issues.

  • Analysis of different data sets will be performed using R

Mărturii

★★★★★
★★★★★

Categorii înrudite

Cursuri înrudite

Reduceri pentru cursuri

Newsletter Oferte Cursuri

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

Câțiva dintre clienții noștri

is growing fast!

We are looking for a good mixture of IT and soft skills in Romania!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions