Thank you for sending your enquiry! One of our team members will contact you shortly.
Thank you for sending your booking! One of our team members will contact you shortly.
Schița de curs
Deep Learning vs Machine Learning vs alte metode
- Când Deep Learning este potrivit
- Limitele Deep Learning
- Compararea preciziei și costurilor diferitelor metode
Prezentare generală a metodelor
- Plase și Straturi
- Înainte / Înapoi: calculele esențiale ale modelelor compoziționale stratificate.
- Pierdere: sarcina de învățat este definită de pierdere.
- Solver: solutorul coordonează optimizarea modelului.
- Catalog de straturi: stratul este unitatea fundamentală de modelare și calcul
- Convoluția
Metode și modele
- Backprop, modele modulare
- Modul Logsum
- RBF Net
- Pierdere MAP/MLE
- Transformări ale spațiului parametrilor
- Modulul convoluțional
- Învățare bazată pe gradient
- Energie pentru inferență,
- Obiectiv pentru învățare
- PCA; NLL:
- Modele variabile latente
- LVM probabilistic
- Funcția de pierdere
- Detectare cu Fast R-CNN
- Secvențe cu LSTM-uri și Vision + Language cu LRCN
- Predicție pixeli cu FCN
- Design-cadru și viitor
Instrumente
- Caffe
- Tensorflow
- R
- Matlab
- Alții...
Cerințe
Este necesară cunoașterea oricărui limbaj de programare. Familiarizarea cu Machine Learning nu este obligatorie, dar este benefică.
21 ore
Mărturii (3)
Hunter este fabulos, foarte captivant, extrem de bine informat și personal. Foarte bine făcut.
Rick Johnson - Laramie County Community College
Curs - Artificial Intelligence (AI) Overview
Tradus de catre o masina
I liked the new insights in deep machine learning.
Josip Arneric
Curs - Neural Network in R
Tradus de catre o masina
Ann created a great environment to ask questions and learn. We had a lot of fun and also learned a lot at the same time.
Gudrun Bickelq
Curs - Introduction to the use of neural networks
Tradus de catre o masina