Cursuri Artificial Intelligence | Cursuri Artificial Intelligence (AI)

Cursuri Artificial Intelligence

Instruiunile de instruire Artificial Intelligence (AI), instruite de instructori locali și instructori, demonstrează prin practica practică implementarea soluțiilor AI pentru rezolvarea problemelor din lumea reală. Formarea AI este disponibilă ca "formare live la fața locului" sau "formare live la distanță". Training-ul live la fața locului poate fi efectuat la fața locului la sediul clientului România sau în centrele de formare corporativa NobleProg din România România . Instruirea live la distanță este realizată printr-un desktop interactiv, la distanță. NobleProg - Furnizorul dvs. de formare locală.

Machine Translated

Mărturii

★★★★★
★★★★★

Artificial Intelligence Course Outlines

Numele cursului
Durata
Sinoptic
Numele cursului
Durata
Sinoptic
14 hours
Sinoptic
Acest curs acoperă AI (accentuând Machine Learning și Deep Learning ) în industria Automotive . Ajută la determinarea tehnologiei care poate fi utilizată (potențial) în situații multiple într-o mașină: de la o simplă automatizare, recunoașterea imaginii până la luarea deciziilor autonome.
21 hours
Sinoptic
Acest curs a fost conceput pentru persoanele interesate de extragerea sensului din textul scris în limba engleză, deși cunoștințele pot fi aplicate și altor limbi umane.

Cursul se va referi la modul de utilizare a textului scris de oameni, cum ar fi postările pe blog, tweet-urile etc.

De exemplu, un analist poate configura un algoritm care va ajunge la o concluzie automată bazată pe o sursă extinsă de date.
21 hours
Sinoptic
PredictionIO este un server de Machine Learning platformă open-source, construit pe partea superioară a stack-ului open-source de ultimă oră.

Public

Acest curs este adresat dezvoltatorilor și oamenilor de știință care doresc să creeze motoare predictive pentru orice sarcină de învățare a mașinilor.
14 hours
Sinoptic
Model Matching este o tehnică folosită pentru a localiza tiparele specificate în cadrul unei imagini. Poate fi utilizat pentru a determina existența unor caracteristici specificate în cadrul unei imagini capturate, de exemplu eticheta așteptată pe un produs defect într-o linie de fabrică sau dimensiunile specificate ale unei componente. Este diferit de „ Pattern Recognition ” (care recunoaște tiparele generale bazate pe colecții mai mari de eșantioane asociate) prin faptul că dictează în mod specific ceea ce căutăm, apoi ne spune dacă modelul așteptat există sau nu.

Formatul cursului

- Acest curs introduce abordările, tehnologiile și algoritmii folosiți în câmpul de potrivire a modelelor, așa cum se aplică la Machine Vision .
21 hours
Sinoptic
PaddlePaddle (PArallel Distributed Deep LEarning) este o platformă de învățare scalabilă profundă dezvoltată de Baidu În acest training instruit, participanții vor învăța cum să folosească PaddlePaddle pentru a permite învățarea profundă în aplicațiile lor de produse și servicii Până la sfârșitul acestui curs, participanții vor putea: Configurați și configurați PaddlePaddle Creați o rețea neuronală convoluțională (CNN) pentru recunoașterea imaginilor și detectarea obiectelor Crearea unei rețele neuronale recurente (RNN) pentru analiza sentimentului Creați o învățare profundă pe sistemele de recomandare pentru a ajuta utilizatorii să găsească răspunsuri Preziceți ratele de clic (CTR), clasificați seturile de imagini largescale, efectuați recunoașterea optică a caracterelor (OCR), căutați în funcție de rang, detectați viruși de computer și implementați un sistem de recomandări Public Dezvoltatori Cercetătorii de date Formatul cursului Prelegere parte, discuții parțiale, exerciții și practici grele de manevră .
21 hours
Sinoptic
Acest curs utilizează o abordare practică a predării OptaPlanner . Acesta oferă participanților instrumentele necesare pentru a îndeplini funcțiile de bază ale acestui instrument.
14 hours
Sinoptic
În acest training, instruit live, condus de instructor, trecem peste principiile rețelelor neuronale și folosim OpenNN pentru a implementa o aplicație de probă.

Formatul cursului

- Prelegeri și discuții însoțite de exerciții practice.
7 hours
Sinoptic
În cadrul acestei instruiri, instruite în direct, participanții vor învăța cum să configureze și să folosească OpenNMT pentru a efectua traducerea diferitelor seturi de date. Cursul începe cu o imagine de ansamblu a rețelelor neuronale, deoarece acestea se aplică la traducerea automată. Participanții vor efectua exerciții live pe tot parcursul cursului pentru a demonstra înțelegerea conceptelor învățate și pentru a primi feedback de la instructor.

Până la sfârșitul acestui training, participanții vor avea cunoștințele și practicile necesare pentru a implementa o soluție live OpenNMT .

Probele de limbă sursă și țintă vor fi pre-aranjate conform cerințelor audienței.

Formatul cursului

- Part de conferință, parte discuție, practică practică grea
14 hours
Sinoptic
Biblioteca Apache OpenNLP este un set de instrumente bazate pe mașini pentru procesarea textului lingvistic natural Acesta susține cele mai comune sarcini NLP, cum ar fi detectarea limbajului, tokenizarea, segmentarea frazelor, etichetarea partofspeech, extragerea entității numită, fragmentarea, parsarea și rezoluția coreference În acest training instruit, participanții vor învăța cum să creeze modele pentru prelucrarea datelor bazate pe text folosind OpenNLP Datele de antrenament, precum și seturile personalizate de date vor fi folosite ca bază pentru exercițiile de laborator Până la sfârșitul acestui curs, participanții vor putea: Instalați și configurați OpenNLP Descărcați modelele existente, precum și creați-le Formarea modelelor pe diferite seturi de date de eșantion Integrați OpenNLP cu aplicațiile Java existente Public Dezvoltatori Cercetătorii de date Formatul cursului Prelegere parte, discuții parțiale, exerciții și practici grele de manevră .
14 hours
Sinoptic
OpenFace este un software bazat pe Python și Torch, bazat pe cercetare FaceNet a Google, bazată pe tehnologia opensource, în timp real În acest training instruit, participanții vor învăța cum să folosească componentele OpenFace pentru a crea și implementa o aplicație de recunoaștere facială Până la sfârșitul acestui curs, participanții vor putea: Lucrați cu componentele OpenFace, inclusiv dlib, OpenVC, Torch, și nn4 pentru a implementa detectarea feței, alinierea și transformarea Aplicați OpenFace aplicațiilor din lumea reală, cum ar fi supravegherea, verificarea identității, realitatea virtuală, jocurile și identificarea clienților repetate etc Public Dezvoltatori Cercetătorii de date Formatul cursului Prelegere parte, discuții parțiale, exerciții și practici grele de manevră .
28 hours
Sinoptic
OpenCV (Open Source Computer Vision Library: http://opencv.org) este o bibliotecă licențiată BSD cu licență deschisă, care include mai multe sute de algoritmi de vizualizare a calculatorului.

Public

Acest curs este adresat inginerilor și arhitecților care doresc să utilizeze OpenCV pentru proiecte de viziune pe calculator
21 hours
Sinoptic
Cursul este dedicat celor care doresc să cunoască un program alternativ la pachetul comercial MATLAB Instruirea în trei zile oferă informații complete privind deplasarea în mediul înconjurător și realizarea pachetului OCTAVE pentru analiza datelor și calculele de inginerie Beneficiarii cursului sunt începători, dar și cei care cunosc programul și care ar dori să-și sistematizeze cunoștințele și să-și îmbunătățească abilitățile Nu este necesară cunoașterea altor limbi de programare, dar va facilita în mare măsură însușirea cunoștințelor de către cursanți Cursul vă va arăta cum să utilizați programul în multe exemple practice .
14 hours
Sinoptic
Această sesiune de instruire bazată pe clasă va conține prezentări și exemple pe computer și exerciții de studiu de caz pentru a fi întreprinse cu biblioteci relevante neuronale și profunde
21 hours
Sinoptic
Această sesiune de pregătire bazată pe clasă va explora tehnicile NLP în colaborare cu aplicarea AI și Robotics în afaceri. Delegații vor întreprinde exemple bazate pe computer și exerciții de rezolvare a studiilor de caz folosind Python
21 hours
Sinoptic
Se estimează că datele nestructurate reprezintă peste 90 la sută din toate datele, o mare parte sub formă de text. Postările de blog, tweet-urile, social media și alte publicații digitale se adaugă continuu la acest corp de date în creștere.

Acest centru de cursuri, condus în direct de instructor, în jurul extragerii informațiilor și semnificațiilor din aceste date. Folosind bibliotecile R Language and Natural Language Processing (NLP) , combinăm concepte și tehnici din informatică, inteligență artificială și lingvistică de calcul pentru a înțelege algoritmic sensul din spatele datelor text. Probele de date sunt disponibile în diferite limbi, conform cerințelor clienților.

Până la sfârșitul acestui training, participanții vor putea pregăti seturi de date (mari și mici) din surse disparate, apoi vor aplica algoritmi potriviți pentru a analiza și raporta asupra semnificației sale.

Formatul cursului

- Prelegeri de părți, discuții în parte, practici practice grele, teste ocazionale pentru evaluarea înțelegerii
21 hours
Sinoptic
Generarea limbajului natural (NLG) se referă la producerea de text sau de vorbire în limba naturală de către un calculator În acest training instruit, participanții vor învăța cum să folosească Python pentru a produce text de limbă naturală de înaltă calitate prin construirea propriului sistem NLG de la zero Studiile de caz vor fi, de asemenea, examinate, iar conceptele relevante vor fi aplicate proiectelor de laborator live pentru generarea conținutului Până la sfârșitul acestui curs, participanții vor putea: Utilizați NLG pentru a genera automat conținut pentru diverse industrii, de la jurnalism, până la imobiliare, la rapoarte meteorologice și sportive Selectați și organizați conținutul sursă, planificați propozițiile și pregătiți un sistem pentru generarea automată a conținutului original Înțelegeți conducta NLG și aplicați tehnicile corecte în fiecare etapă Înțelegerea arhitecturii unui sistem de generare a limbajului natural (NLG) Implementați algoritmii și modelele cele mai potrivite pentru analiză și ordonare Trageți datele din sursele de date disponibile publicului, precum și bazele de date cuantificate pentru a le utiliza ca material pentru textul generat Înlocuiți procesele de scriere manuale și laborioase cu crearea de conținut automatizat, generat de calculator Public Dezvoltatori Cercetătorii de date Formatul cursului Prelegere parte, discuții parțiale, exerciții și practici grele de manevră .
21 hours
Sinoptic
În cadrul acestei instruiri instruite, participanții vor învăța tehnicile cele mai relevante și de tăiere a mașinilor în Python, deoarece construiesc o serie de aplicații demo care implică imagini, muzică, text și date financiare Până la sfârșitul acestui curs, participanții vor putea: Implementarea algoritmilor de învățare a mașinilor și a tehnicilor de rezolvare a problemelor complexe Aplicați învățarea profundă și învățarea semisupervizată a aplicațiilor care implică imagini, muzică, text și date financiare Împingeți algoritmii Python la potențialul lor maxim Utilizați biblioteci și pachete, cum ar fi NumPy și Theano Public Dezvoltatori Analistii Cercetătorii de date Formatul cursului Prelegere parte, discuții parțiale, exerciții și practici grele de manevră .
28 hours
Sinoptic
Acest curs vă va oferi cunoștințe în rețelele neuronale și, în general, în algoritmul de învățare automată, învățare profundă (algoritmi și aplicații).

Această instruire se concentrează mai mult asupra elementelor fundamentale, dar vă va ajuta să alegeți tehnologia potrivită: TensorFlow , Caffe , Teano, DeepDrive, Keras , etc. Exemplele sunt făcute în TensorFlow .
7 hours
Sinoptic
Instruirea se adresează persoanelor care doresc să învețe elementele de bază ale rețelelor neuronale și aplicațiile lor.
21 hours
Sinoptic
Această sesiune de pregătire bazată pe clasă va explora instrumente de învățare automată cu Python (sugerat) Delegații vor avea exemple pe computer și exerciții de studiu de caz.
21 hours
Sinoptic
Acest curs introduce metode de învățare în robotică.

Este o prezentare generală a metodelor, motivațiilor și ideilor principale existente în contextul recunoașterii modelului.

După un scurt context teoretic, participanții vor efectua exerciții simple folosind open source (de obicei R) sau orice alt software popular.
21 hours
Sinoptic
scopul acestui curs este de a oferi competență generală în aplicarea metodelor de învățare automată în practică. Prin utilizarea limbajului de programare Python și a diverselor sale biblioteci și pe baza unei multitudini de exemple practice, acest curs învață să folosească cele mai importante blocuri de mașini de învățare, să facă decizii de modelare a datelor, să interpreteze rezultatele algoritmilor și validarea rezultatelor.

scopul nostru este de a vă oferi abilitățile de a înțelege și de a folosi cele mai fundamentale instrumente de la machine learning Toolbox cu încredere și pentru a evita capcanele comune de date Științe aplicații.
14 hours
Sinoptic
Această sesiune de instruire bazată pe clasă va explora tehnicile de învățare a mașinilor, cu ajutorul exemplelor bazate pe calculator și a exercițiilor de rezolvare a studiilor de caz folosind un limbaj de program relevant .
14 hours
Sinoptic
În acest training instruit, participanții vor învăța cum să utilizeze stiva tehnologiei iOS Machine Learning (ML), pe măsură ce parcurg crearea și implementarea unei aplicații mobile iOS Până la sfârșitul acestui curs, participanții vor putea: Creați o aplicație mobilă capabilă de procesarea imaginilor, analiza textului și recunoașterea vorbirii Accesați modele ML precomprimate pentru integrarea în aplicațiile iOS Creați un model ML personalizat Adăugați suport pentru Siri Voice aplicațiilor iOS Înțelegeți și utilizați cadre precum coreML, Vision, CoreGraphics și GamePlayKit Utilizați limbi și instrumente precum Python, Keras, Caffee, Tensorflow, Scikit learn, libsvm, Anaconda și Spyder Public Dezvoltatori Formatul cursului Prelegere parte, discuții parțiale, exerciții și practici grele de manevră .
7 hours
Sinoptic
Acest curs de formare este destinat persoanelor care ar dori să aplice tehnici de bază Machine Learning în Machine Learning în aplicații practice.

Public

Cercetătorii de date și statisticienii care au o anumită familiaritate cu învățarea în mașină și știu cum să programeze programul R. Accentul acestui curs este pus pe aspectele practice ale pregătirii datelor / modelului, execuției, analizei post-hoc și vizualizării. Scopul este de a oferi o introducere practică în învățarea mașinilor pentru participanții interesați de aplicarea metodelor la locul de muncă

Exemple specifice sectorului sunt folosite pentru a face formarea relevantă pentru public.
14 hours
Sinoptic
Scopul acestui curs este de a oferi o competență de bază în aplicarea metodelor de Machine Learning în practică. Prin utilizarea platformei de programare R și a diferitelor sale biblioteci, și pe baza unei multitudini de exemple practice, acest curs învață cum să folosești cele mai importante elemente de bază ale Machine Learning , cum să ia decizii de modelare a datelor, să interpretezi rezultatele algoritmilor și validarea rezultatelor.

Scopul nostru este să vă oferim abilitățile de a înțelege și utiliza instrumentele cele mai fundamentale din caseta de instrumente Machine Learning încredere și de a evita capcanele comune ale aplicațiilor Data Science .
14 hours
Sinoptic
Scopul acestui curs este de a oferi o competență de bază în aplicarea metodelor de Machine Learning în practică. Prin utilizarea Python programare Python și a diferitelor sale biblioteci și, pe baza unei multitudini de exemple practice, acest curs învață cum să folosești cele mai importante elemente de bază ale Machine Learning , cum să ia decizii de modelare a datelor, să interpretezi rezultatele algoritmilor și validarea rezultatelor.

Scopul nostru este să vă oferim abilitățile de a înțelege și utiliza instrumentele cele mai fundamentale din caseta de instrumente Machine Learning încredere și de a evita capcanele comune ale aplicațiilor Data Science .
14 hours
Sinoptic
Scopul acestui curs este de a oferi o competență de bază în aplicarea metodelor de Machine Learning în practică. Prin utilizarea limbajului de programare Scala și a diferitelor sale biblioteci, și pe baza unei multitudini de exemple practice, acest curs învață cum să folosești cele mai importante elemente de bază ale Machine Learning , cum să ia decizii de modelare a datelor, să interpretezi rezultatele algoritmilor și validarea rezultatelor.

Scopul nostru este să vă oferim abilitățile de a înțelege și utiliza instrumentele cele mai fundamentale din caseta de instrumente Machine Learning încredere și de a evita capcanele comune ale aplicațiilor Data Science .
28 hours
Sinoptic
Învățarea automată este o ramură a Inteligenței artificiale în care calculatoarele au capacitatea de a învăța fără a fi programate explicit. R este un limbaj de programare popular în industria financiară. Este utilizat în aplicații financiare, de la programe de tranzacționare de bază până la sisteme de gestionare a riscurilor.

În cadrul acestui training, instruit în direct, participanții vor învăța cum să aplice tehnici și instrumente de învățare automată pentru rezolvarea problemelor din lumea reală în industria finanțelor. R va fi folosit ca limbaj de programare.

Participanții învață mai întâi principiile cheie, apoi își pun cunoștințele în practică construindu-și propriile modele de învățare automată și folosindu-le pentru a finaliza o serie de proiecte ale echipei.

Până la sfârșitul acestui antrenament, participanții vor putea:

- Înțelegeți conceptele fundamentale în învățarea mașinii
- Aflați aplicațiile și utilizările învățării automate în finanțe
- Dezvolta propria strategie de tranzacționare algoritmică folosind învățarea automată cu R

Public

- Dezvoltatori
- Cercetătorii de date

Formatul cursului

- Partea de prelegere, o discuție parțială, exerciții și practici practice
21 hours
Sinoptic
Învățarea automată este o ramură a Inteligenței artificiale în care calculatoarele au capacitatea de a învăța fără a fi programate explicit. Python este un limbaj de programare faimos pentru sintaxa și lizibilitatea clară. Oferă o colecție excelentă de biblioteci bine testate și tehnici pentru dezvoltarea aplicațiilor de învățare automată.

În cadrul acestui training, instruit în direct, participanții vor învăța cum să aplice tehnici și instrumente de învățare automată pentru rezolvarea problemelor din lumea reală în industria finanțelor.

Participanții învață mai întâi principiile cheie, apoi își pun cunoștințele în practică construindu-și propriile modele de învățare automată și folosindu-le pentru a finaliza o serie de proiecte ale echipei.

Până la sfârșitul acestui antrenament, participanții vor putea:

- Înțelegeți conceptele fundamentale în învățarea mașinii
- Aflați aplicațiile și utilizările învățării automate în finanțe
- Dezvoltați propria strategie de tranzacționare algoritmică folosind învățarea automată cu Python

Public

- Dezvoltatori
- Cercetătorii de date

Formatul cursului

- Partea de prelegere, o discuție parțială, exerciții și practici practice
Sfarsit de saptamana AI Cursuri, Seara AI Training, AI Camp, Artificial Intelligence Cu instructor, Sfarsit de saptamana Artificial Intelligence Training, Seara Artificial Intelligence Cursuri, AI Coaching, Artificial Intelligence Instructor, AI (Artificial Intelligence) Trainer, Artificial Intelligence Cursuri, AI (Artificial Intelligence) Clase, AI (Artificial Intelligence) Pe pagina, Artificial Intelligence curs privat, AI one on one trainingSfarsit de saptamana Artificial Intelligence Cursuri, Seara Artificial Intelligence Training, Artificial Intelligence Camp, AI (Artificial Intelligence) Cu instructor, Sfarsit de saptamana Artificial Intelligence Training, Seara Artificial Intelligence Cursuri, Artificial Intelligence (AI) Coaching, Artificial Intelligence Instructor, AI Trainer, Artificial Intelligence (AI) Cursuri, AI (Artificial Intelligence) Clase, AI (Artificial Intelligence) Pe pagina, Artificial Intelligence (AI) curs privat, Artificial Intelligence (AI) one on one training

Reduceri pentru cursuri

Newsletter Oferte Cursuri

Respectăm confidențialitatea adresei dvs. de email. Nu vom transmite sau vinde adresa altor părți. Puteți să schimbați preferințele sau să vă dezabonați complet în orice moment.

Câțiva dintre clienții noștri

is growing fast!

We are looking to expand our presence in Romania!

As a Business Development Manager you will:

  • expand business in Romania
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!